

INSTALLATION, OPERATION AND MAINTENANCE MANUAL (IOM)

IOM-5200 02-16

Model 5200 Pilot Operated Pressure / Vacuum Relief Vent w/ Pipeaway Connection

Valve Concepts, Inc. ISO Registered Company

SECTION I

I. DESCRIPTION AND SCOPE

The maintenance of this Pilot Operated Vent Valve (POVV) should only be done by qualified valve technicians. It is important that the technician be familiar with the API and corporate standards, corporate safety policies and the relief vent manufacturer requirements. When repair services are performed by an outside company, the company needs to be a Cashco factory authorized repair center which specializes in low pressure venting devices.

II. VALVE DESIGN AND FUNCTION

The Model 5200 Pilot Operated Vents are used on liquid storage tanks and other process vessels or systems to prevent structural damage during the process of filling or emptying of a tank or for changes in atmospheric conditions. Excess pressure is vented out through a pipeaway connection.

Storage tanks are pressurized when liquid is pumped in, compressing the existing vapor or when increasing temperature causes increased evaporation or expansion of existing vapor. Conversely, a vacuum may be created when fluid is pumped out or as atmospheric temperature decreases. To prevent structural damage, vapor must be allowed to escape or enter the tank at a specified flow rate. The volume rate of venting is dependent on the tank size, displacement rate and the flash point of the fluid. See API Standard 2000 for procedures to determine venting requirements.

A pilot operated relief vent has two principal advantages over other relief vent designs:

1. Bubble tight shutoff up to 100% of set point.

2. Full open capacity for pressure relief is achieved within 10% above set point.

For information on repair centers in your area, please contact:

Valve Concepts, Inc. %Cashco, Inc. 607 West 15th Street Ellsworth, KS 67439-0006 (785) 472-4461 (Phone) (785) 472-3539 (Fax)

SECTION II

Thus the vent valve is capable of operating at pressures closer to the maximum allowable working pressure of the tank. Operating at higher pressures reduces evaporation and total venting volume, thereby reducing product loss and the cost of handling emissions.

Each application must be reviewed to ensure material compatibility with all metal and soft good components with the service conditions. The pallet assembly, wetted components and tubing are 316 SST. Diaphragm material is FKM, unless specified otherwise.

The pilot valve is factory set to comply with the specifications on the purchase order. The adjustable pressure range is a function of the installed spring and will be stamped on the metal nameplate. The set point pressure may be changed within the design parameters of the spring while installed on line or in a maintenance shop. See Section IX for setting and testing procedures.

This manual is intended to provide recommended procedures and practices for installation, operation and maintenance of the Model 5200 POVV. Although this manual cannot cover all possible contingencies, these guidelines will provide safe and reliable pilot valve performance.

SECTION III

III. SAFETY WARNINGS

Warning: Before beginning any relief vent inspection or maintenance, carefully read and understand the information in this manual. If there are any questions concerning the information in this manual, please contact the factory before proceeding.

Tank or system protection is the primary function of the Pilot Operated Vent Valve (POVV). It must be selected to meet the total pressure flow requirements within the maximum allowable working pressure of the system on which it is installed. Consult API Standard 2000 for tank protection sizing procedures. Improperly specified relief vents may result in structural damage to the tank or system, and can cause severe personal injury or death.

In the event of a diaphragm failure, the Model 5200 will vent pressure to the pipeaway connection causing the pressure relief valve to fail in the OPEN position. The vent will now function like a weight loaded vent under this condition with a lower set point. Consult the factory for any questions related to this over-pressure condition.

The 1/2" OD SST pilot valve sensing line must be kept open and unobstructed to ensure that the pilot "senses" the actual tank pressure. For applications where tank vapors may condense or polymerize in the sensing tubing or the pilot valve, a nitrogen purge may be required to prevent internal obstruction of the tube. Consult the factory for recommendations.

CAUTION

DO NOT attempt to remove the vent from the tank or process vessel without first bleeding all pressure from the system. ALTERNATIVE MEANS OF PRESSURE RELIEF MUST BE PROVIDED WHEN THE VENT IS OUT OF SERVICE.

After isolating the relief vent, bleed all pressure from both main and pilot valve before removing the Model 5200 POVV.

NOTE: Both the pilot valve and main valve are exposed to the process vapors. Observe all plant procedures and Material Safety Data Sheet recommendations before inspecting, adjusting or servicing any components.

The vent on the spring bonnet of the pilot must be clean and unobstructed for proper and safe operation of the valve.

SECTION IV

IV. SHIPPING, INSPECTION AND STORAGE

The POVV vent is carefully packaged to prevent damage or contamination during shipping. Inspect the equipment when it is received and report any damage to the carrier immediately. The POVV should be stored in a clean environment with all the protective flange covers in place to prevent intrusion of foreign materials. If there are indications of physical damage or internal contamination, the valve may need to be disassembled, cleaned and inspected prior to installation.

Lifting brackets may be provided on the main valve for lifting and handling. To avoid damage to the lower flange surface, rest the vent on a soft clean gasket material until it is ready to be installed. **DO NOT** store the POVV directly on the ground.

Make sure that any loading weights that might have been shipped separately, to protect the vent during shipping, are accounted for and stored with the vent. These weights, when required, will need to be installed during installation.

V. INSTALLATION

The Model 5200 POVV is a precision device that must be handled carefully to ensure seat tightness.

WARNING

The vent must be installed in a vertical position. The tank nozzle on which the vent is mounted should have the same nominal diameter as the venting device. It is recommended that the tank nozzle flange face be within 1 degree of horizontal for best performance of the venting device.

- At installation, the POVV should be carefully lifted into position using the lifting brackets on the body. Use the case assembly (125,123) to help align the body directly over the tank nozzle. **DO NOT** use the pilot valve or pickup line to pull the POVV into position.
- 2. Aluminum body vents should be mated to flatfaced 125# ASME flanges. Mating flanges should be flat within 0.020" and clean; free of scratches, corrosion and tool marks. A full faced gasket is recommended.
- Install the flange gasket on the nozzle face. Use either a full faced or ring gasket for raised face flanges. Ensure that the gasket material is suitable for the service. See Table 1 for gasket dimensions.

		Table 1			
Body Flange Gasket Dimensions					
CS, SST 150# ASME RF	O.D.	I.D.	B.C.	Hole	Qty
2'	4.12	2.38			
3"	5.38	3.50			
4"	6.88	4.50			
6"	8.75	6.62			
8"	11.00	8.62			
10"	13.38	10.80			
12"	16.12	12.80			
Alum w/ 125# ASME FF					
2"	6.00	2.00	4.75	.75	4
3"	7.50	3.00	6.00	.75	4
4"	9.00	4.00	7.50	.75	8
6"	11.00	6.00	9.50	.88	8
8"	13.50	8.00	11.75	.88	8
10"	16.00	10.0	14.25	1.00	12
12"	19.00	12.00	17.00	1.00	12

- 5. Lubricate all studs and nuts with an appropriate thread lubricant. If stainless steel studs and nuts are required, use an anti-seize lubricant such as moly-disulfide.
- 6. Remove flange protective covers and carefully set the POVV down on the gasket and face of the nozzle flange.

WARNING

Minimum clearance between tank roof and vacuum inlet port must be at least equal to the vents' nominal flange bore. Tank nozzle bore must be greater than or equal to vent inlet flange bore. Inlet piping loads must be supported by appropriate structural supports, NOT by the vent body.

Re	Table 2 Recommended Minimum Torque Values *				
Size	Qty	Bolt	Torque (lb-ft)		
Size	Holes	(UNC)	Raised Face	Flat Face	
2"	4	5/8"-11	31	81	
3"	4	5/8"-11	43	106	
4"	8	5/8"-11	29	68	
6"	8	3/4'10	51	101	
8"	8	3/4"-10	78	142	
10"	12	7/8"-9	75	138	
12"	12	7/8"-9	93	179	
* Torque values are based on a gasket factor $m = 3.5$, Gasket factor $y = 4000$ psi, operating pressure = 30 psi					

 Install lockwashers and nuts. Tighten nuts to half the recommended torque value using an alternating crossing pattern. See Table 2.

8. Make sure that the gasket is compressed evenly and the flanges are not distorted. **NOTE:** Misalignment of flange faces will cause bending stresses at the flange and may damage flange joint. Refer to Addendum A on

pages 17 and 18.

- 9. Finish tightening nuts to the point that no additional rotation occurs.
- 10. If loading weights were shipped separate from the vent, install weights on vacuum pressure pallet. Ensure that all packing has been removed.

VI. PILOT MAINTENANCE

A. General:

- 1. Maintenance procedures herein after are based upon removal of the pilot/vent valve unit from the vessel/piping where installed.
- 2. Owner should refer to owner's procedures for removal, handling and cleaning of nonreusable parts; i.e. gaskets, suitable solvents, etc.
- 3. All indicated Item Numbers that are with respect to the Pilot Assembly will be in parenthesis and underscored; i.e. (29). All Item Numbers that are with respect to the Main Valve are not underscored; i.e. (109).
- B. Separation from Main Valve and Disassembly:
 - Disconnect sense tube (133) from sense tube connectors (131) and (<u>132</u>). Also, disconnect the discharge tube (134) from fitting (31) and sense tube connector (132) Remove the pilot valve assembly from the nipple (130) by rotating the pilot body (<u>01</u>) CCW.
 - Secure body (<u>01</u>) in vise with 'sensing" port facing front. Disconnect tubing (<u>34</u>) from fittings (<u>32</u>),(<u>33</u>).
 - Paint or embed a set of match marks between upper case (<u>22</u>), spacer (<u>13</u>) and lower case (<u>03</u>) along flanged area. Note the location of 1/8" NPT tap from elbow (<u>33</u>) in relation to body sensing port and straight connector (<u>32</u>).

SPRING UNDER COMPRESSION. Prior to removing flange bolts, relieve spring compression by backing out the adjusting screw. Failure to do so may result in flying parts that could cause personal injury.

- Rotate the closing cap (<u>29</u>) CCW for removal. Loosen the adjusting screw nut (<u>27</u>) two revolutions. Rotate Adjusting screw (<u>28</u>) CCW and remove.
- Remove diaphragm case nuts (<u>19</u>), washers (<u>25</u>) and cap screws (<u>26</u>). Grasp spring bonnet (<u>23</u>) and lift up until

diaphragm case $(\underline{22})$ clears top of spring button $(\underline{21})$. Set assembly aside.

- Lift range spring (<u>20</u>) and spring button (<u>21</u>) up and set aside.
- Insert a tool in the slot in the top of stud (<u>18</u>) to prevent stud rotation. Rotate nut (<u>19</u>) CCW to remove nut and spring guides (<u>17</u>).
- 8. Remove sense pressure ring (<u>15</u>), sense support plate (<u>16</u>), sense diaphragm (<u>14</u>), and diaphragm case spacer (<u>13</u>).
- 9. Remove top bolt gasket (<u>07</u>) and sense diaphragm spacer (<u>12</u>).
- Remove boost support plate (<u>11</u>), boost diaphragm (<u>10</u>), boost diaphragm spacer (<u>09</u>) and another bolt gasket (<u>07</u>).

FOR Pilot with Pressure \geq 3.2 psig: remove boost pressure ring (<u>36</u>).

- Rotate 7/16" hex head cap screws (<u>04</u>) CCW to remove. Lift up on lower diaphragm case (<u>03</u>) to remove lower case and body gasket (<u>02</u>). **NOTE** the alignment of the four bolt holes and the sense hole in case (<u>03</u>) with the holes in the body (<u>01</u>).
- Grasp spindle stud (<u>18</u>) and lift upwards to extract the spindle assembly (06) from the body (<u>01</u>). Remove seal diaphragm (<u>08</u>) from spindle. With a pick type tool lift out seat o-ring (<u>05</u>).
- Rotate jam nut (<u>27</u>) CCW two rotations and remove blow down needle (<u>28</u>) from body (<u>01</u>). Replace with new O-ring (<u>30</u>).
- 14. Inspect parts and replace it parts show signs of wear. Clean parts with suitable cleaner.
- C. Re-assembly:
 - Insert new seat o-ring (<u>05</u>) in the bottom of the spindle assembly. Place spindle assembly inside the body cavity, threaded end up. Slide a new seal diaphragm over threaded end of spindle and position it on top of the body. Align holes in seal diaphragm with holes in body.

- Position new body gasket (<u>02</u>) on top of the seal diaphragm, align gasket holes.
 DO NOT cover sensing hole in the body.
- Align holes in the lower diaphragm case (<u>03</u>) with body (<u>01</u>) and place the case on top of the gasket. **DO NOT cover** sensing hole. Use cap screws (<u>04</u>) to secure lower diaphragm case (<u>03</u>) to the body. (<u>01</u>). Tighten to 10-15 ft. lbs.
- Slide one bolt gasket (<u>07</u>) and boost diaphragm spacer (<u>09</u>) over threaded end of spindle (<u>18</u>).
- 5. Place another bolt gasket (<u>07</u>), the boost diaphragm (<u>10</u>), and support plate-boost (<u>11</u>) on spindle stud (<u>18</u>). Align bolt holes for all parts.

FOR Pilot with Pressure \geq 3.2 psig: install boost pressure ring (<u>36</u>).

- Install sense diaphragm spacer (<u>12</u>) and the last bolt gasket (<u>07</u>) on spindle stud (<u>18</u>).
- Place the diaphragm case spacer (<u>13</u>) on top of the diaphragm (<u>10</u>), (or on top of the boost pressure ring (<u>36</u>)) and align match marks per previous B 3.
- Install a new sense diaphragm (<u>14</u>) on spindle stud (<u>18</u>) and align the bolt holes with the boost diaphragm (<u>10</u>) and spacer (<u>13</u>).
- Stack the sense support plate (<u>16</u>) and the spring guides (<u>17</u>) over end of spindle stud (<u>18</u>).
- 10. Install and tighten nut (<u>19</u>) to secure all parts. (Check alignment of the bolt holes around the circumference.)
- 11. Position the range spring (<u>20</u>) and spring button (<u>21</u>) on the spring guides (<u>17</u>).
- 12. Place pressure ring (<u>15</u>) on top of diaphragm (<u>14</u>). Recheck alignment of bolt holes.

- Lower the upper diaphragm case (22)
 / spring bonnet (23) assembly over the spring (20), allow to rest on the pressure ring (15). (Ensure alignment of match marks per previous B 3.)
- 14. Install diaphragm case screws (<u>26</u>), flat washers (<u>25</u>), and nuts (<u>19</u>) and tighten.
- 15. Apply a light coat of Bostik Never-Seez to threads of blowdown needle (<u>28</u>). Thread completely into body until the nut (<u>27</u>) contacts the body (<u>01</u>) and then back out two rotations. Rotate nut (<u>27</u>) CW to secure nut tight.
- 16. Reinstall adjusting screw (<u>28</u>) and jam nut (<u>27</u>) in spring bonnet (<u>23</u>). Install closing cap (29).
- 17. Refer to Section IX for Calibration and Testing.
- Install pilot body assembly on nipple (130) tight with CW rotation. Ensure the sense tube connector (<u>132</u>) of the pilot valve assembly is directly above sensing tube connector (131) of the main valve assembly.
- 19. Reconnect tubing (<u>34</u>) to fittings (<u>32</u>), (<u>33</u>) and tubing (133) to fittings (131),(<u>132</u>). Then, reconnect discharge tube (134) to fitting (<u>31</u>) and sense tube connector (<u>132</u>).

VII. VENT VALVE MAINTENANCE

- A. General:
 - The Model 5200 POVV does not require routine lubrication or adjustments. It should be checked periodically, at least twice a year, to confirm that the vent is functioning properly and that the set point is correct.
 - The pilot valve is designed to function in a fail-safe manner. The failure of a seal or a diaphragm will cause pressure to be vented out through a pipeaway connection; the resulting loss in pressure will cause the main valve to open under rising pressure.
 - Periodic inspection for seat tightness should be done to ensure compliance with local air pollution control requirements. If the pipeaway connection relieves to the atmosphere, this may be accomplished with a gas detector calibrated for the principle product in the system.
 - 4. The vent valve will need to be removed from the tank for inspection of diaphragms, gaskets and seals. When this is done, the vent must be handled carefully using the lifting brackets (135) on the body.
 - 5. The main and pilot valve housings, bodies, pallet assemblies and other components are exposed to the process vapor.
- B. Disassembly:
 - Disconnect the tubing connections (pilot to main valve) (131, 133 and 132). Then, disconnect the discharge tubing (134) from fitting (<u>31</u>) and sense tube connector (132) and remove the pilot by rotating the pilot body (<u>01</u>) assembly CCW from nipple (130).

Actuator Diaphragm Replacement:

a. Paint or embed a set of match marks between upper case (125) and lower case (123) along flanged area.

b. Loosen and remove nuts (129) and cap screws (126).

c. Lift up and remove the upper case (125) assembly and set aside. Remove joint tape (141) and diaphragm (128). NOTE: To continue with disassembly - skip to Pressure Pallet Diaphragm Replacement below.

d. Replace with new parts (141 and 128). Position and align bolt holes in the circumference of the diaphragm with the holes in the lower case (123).

e. Reposition upper case assy (125) on diaphragm (128). Align marks made in step (a.) above.

f. Install cap screws (126) and nuts (129) and tighten.

g. Install pilot body assembly on nipple (130) tight with CW rotation. Ensure straight connector (<u>132</u>) of pilot valve assembly is directly above sensing tube connector (131) of the main valve assembly.

h. Reconnect tubing (133) to fittings (131),(132). Then, reconnect the discharge tubing (134) to fitting (<u>31</u>) and sense tube connector (132) Refer to Section IX for Calibration and Testing.

Pressure Pallet Diaphragm Replacement:

(Disassembly continues from c. above)

a. Paint or embed a set of match marks between cover (121) and pipeaway body (119).

b. Rotate cap screws (116) CCW and remove. Grasp the lower case assembly (123) and lift straight up to remove cover (121).

NOTE: Support plate (127) will also lift out of pipeaway body (119). The pressure pallet stem (104) assembly will remain on the seat ring (101).

c. Lay the whole lower case assembly to the side on a flat surface.

d. Lift pressure pallet stem assembly (104) out of the pipeaway body (119). Carefully secure stem (104) in a vise, oriented such that the pallet (106) assembly is directed upwards.

e. Remove lock nut (111), diaphragm retainer plate (109), diaphragm (107), pallet (106) and stiffener plate (105) from stem (104).

f. Inspect and clean seat ring (101). Check seat surface for any nicks, corrosion, pitting or product build up. Seat surface must be clean and smooth for vent to perform properly. *(Continue with step j. unless changing gasket (122)).*

To Remove Adapter Gasket: steps (g - i).

g. Paint or embed a set of match marks between cover (121) and lower case adapter assy (123).

h. Loosen and remove adapter bolts (124). Lift cover (121) up and over support plate (127). Remove and replace adapter gasket (122).

i. Re-install cover (121) and align match marks from g. above. Install adapter bolts (124). Tighten securely.

j. Re-install stiffener plate (105) and pallet (106) on stem (104). **NOTE:** Apply small amount of TFE paste around the center opening (top surface) of the pallet (106).

k. Place a new diaphragm (107) on the pallet (106). *NOTE:* Apply small amount of *TFE* paste around the center opening (top surface) of the diaphragm (107).

I. Install the diaphragm retainer plate (109) and lock nut (111), secure nut tight.

m. Remove stem (104) assembly from vise.

To Remove Pressure Pallet Seat Ring:

NOTE: For replacement of integral or pressed in seat rings, please contact factory.

Paint or embed a set of match marks between the seat ring (101) and the inside of the body.

n. Rotate bolts (103) CCW and remove. Place a wrench on the milled flats of the pallet guides (112), rotate CCW to remove. Mark the location of guides on the edge of seat ring (101) for reference at re-assembly.

CAUTION

The pipeaway body (119) is no longer fastened securely to the body (100) and could fall and cause severe personal injury and material damage.

o. Lift up to remove seat ring (101) and joint tape (141.1). (There is no tape on integral or pressed in seat rings.) Inspect guides (112) and inside of the body cavity (100) for any corrosion or product buildup. Clean all parts as necessary. Seat surfaces must be clean and smooth for diaphragm and pallet to seal properly.

p. Install new joint tape (141.1). See Figure 4. Align match marks for seat ring (101) with body, place seat ring back in body, resting on joint tape. Re-install pallet guides (112) around the seat ring as previously marked. Install bolts (103). Tighten bolts (102) and guides to 15 ft. lbs. (20.3 Nm).

q. Place stem/pallet (104/106) assembly on seat ring (101).

r. Place a piece of joint tape on face of pipeaway body. Position pressure cover (121) on pipeaway body. Align match marks for cover and pipeaway body. Install cap screws (116) to secure cover to pipe-away body.

s. Insert small end of support plate (127) down through the hole in the center of the lower case (123) until it slides over the top of the pressure stem (104).

t. Install new piece of joint tape and diaphragm (141 and 128). Position and align bolt holes in the circumference of the diaphragm with the holes in the lower case (123).

u. Reposition upper case assy (125) on diaphragm (128). Align match marks made in step B. 1. a. previous. Install cap screws (130) and nuts (131) and tighten.

v. Install pilot body assembly on nipple (130) tight with CW rotation. Ensure straight connector (132) of the pilot valve assembly is directly above sensing tube connector (131) of the main valve assembly.

w. Reconnect tubing (133) to fittings (132), (131) and tubing (134) to fittings (132),(<u>31</u>).

DO NOT change vacuum pressure ratings by removing from or adding weights to the pallet assembly without consulting the factory or your VCI representative.

Vacuum Pallet Diaphragm Replacement:

a. Paint or embed a set of match marks between the vacuum cover (115) and the body (100).

b. Rotate cover bolts (116) CCW and remove cover assembly (115), (117), (118). Inspect cover for corrosion, damage or product build up. Clean with a suitable solvent.

c. Lift upwards to remove vacuum stem/ pallet (108/106) assembly, including any loading weights (114) that may be resting on the pallet(106). Inspect and clean seat ring (101). Check seat surface for any nicks, corrosion, pitting or product build-up. Seat surface must be clean and smooth for vent to preform properly.

d. Place stem (108) in a vise with the pallet end up. Remove lock nut (111). Lift up to remove diaphragm retainer plate (110), diaphragm (107), vacuum pallet (106) and stiffener plate (105).

e. Clean and inspect parts for wear, replace if worn.

f. Re-install stiffener plate (105) and pallet (106) on stem (108). **NOTE:** Apply small amount of TFE paste around the center opening (top surface) of the pallet. Install diaphragm (107) and diaphragm retainer plate (110). Re-install and tighten lock nut (111) on stem.

To Remove Vacuum Pallet Seat Ring:

NOTE: If vent has integral or pressed in seat ring, contact the factory.

g. Paint or embed a set of match marks between the seat ring and the inside of the body.

h. Rotate bolts (102) CCW and remove. Remove guides (113). (Use the slot on top of guides and rotate CCW.) Mark the location of these items on the edge of the seat ring (101) for reference at reassembly.

i. Lift up to remove seat ring (101) and joint tape (141.1). (There is no joint tape on integral or pressed in seat rings.) Inspect guides (113) and inside of the body cavity (100) for any corrosion or product build up. Clean as necessary. Replace joint tape. See Figure 4.

j. Align match marks for seat ring (101) with body and place seat ring back in body, resting on joint tape. Re-install pallet guides (113) around the seat ring where previously marked. Install bolts (102). Tighten bolts and guides to 15 ft. lbs. (20.3 Nm).

k. Position stem/pallet(108/106) assembly on seat ring (101). Carefully place loading weights on the pallet.

I. Place joint tape (141.0) in groove in body. Align match mark between cover and body, as per previous step a. above. Place the cover on the body. Install cover bolts (116) tight.

NOTE: When installing the cover (115) ensure the vacuum stem (108) is inserted in the stem guide in the cover (115).

To Remove Inlet Screen:

a. Rotate bolts CCW and remove bolts and retainer. Inspect and clean screen and reinstall to body (100).

SECTION VIII

VIII. ORDERING INFORMATION NEW REPLACEMENT UNIT vs PARTS "KIT" FOR FIELD REPAIR

To obtain a quotation or place an order, please retrieve the Serial Number and Product Code that was stamped on the metal name plate and attached to the unit. This information can also be found on the <u>Bill of Material</u> ("BOM"), a parts list that was provided when unit was originally shipped. (Serial Number typically 6 digits).

NEW REPLACEMENT UNIT:

Contact your local Cashco, Inc., Sales Representative with the Serial Number and Product code. With this information they can provide a quotation for a new unit including a complete description, price and availability.

Do not attempt to alter the original construction of any unit without assistance and approval from the factory. All purposed changes will require a new name plate with appropriate ratings and new product code to accommodate the recommended part(s) changes.

PARTS "KIT" for FIELD REPAIR:

Contact your local Cashco, Inc., Sales Representative with the Serial Number and Product code. Identify the parts and the quantity required to repair the unit from the "BOM" sheet that was provided when unit was originally shipped. If the "BOM" is not available, refer to the crosssectional drawings included in this manual for part identification and selection.

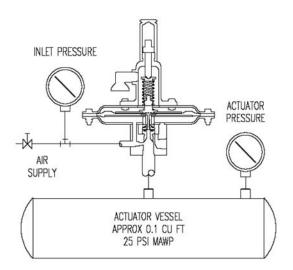
A Local Sales Representative will provide quotation for appropriate Kit Number, Price and Availability.

The contents of this publication are presented for informational purposes only, and while every effort has been made to ensure their accuracy, they are not to be construed as warranties or guarantees, express or implied, regarding the products or services described herein or their use or applicability. We reserve the right to modify or improve the designs or specifications of such product at any time without notice.

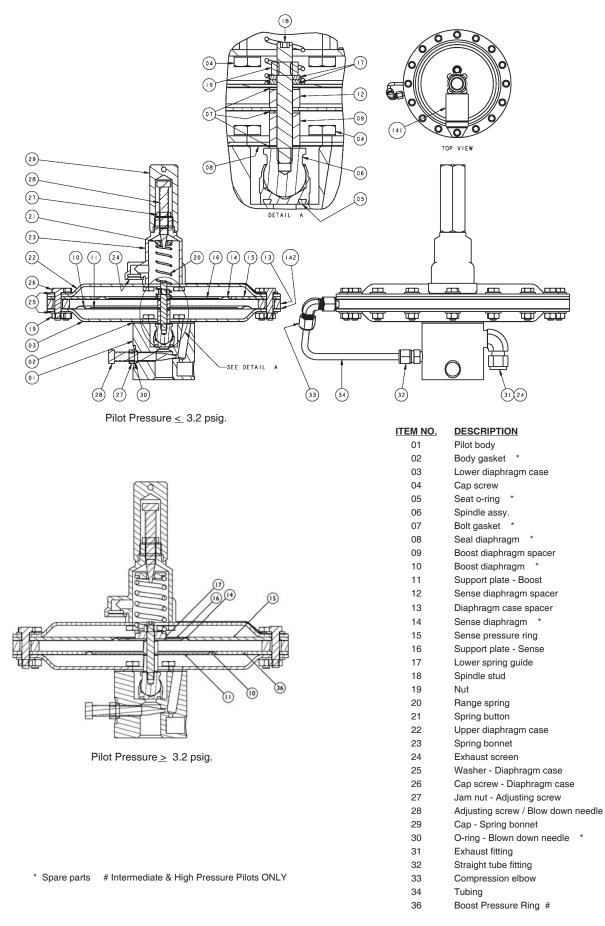
Cashco, Inc. does not assume responsibility for the selection, use or maintenance of any product. Responsibility for proper selection, use and maintenance of any Cashco, Inc. product remains solely with the purchaser.

IX. PRESSURE CALIBRATION AND TESTING PROCEDURE FOR PILOT

- To determine set pressure, slowly increase the pilot inlet pressure. Simulated actuator pressure will rise with inlet. As set pressure is approached, the actuator pressure will begin to decrease. Continue to increase the inlet pressure slowly until the actuator pressure is 90% (+/- 10%) of the inlet pressure. This is the set pressure.
- Rotate the set pressure adjusting screw (<u>28</u>) CW to increase set pressure or CCW to decrease set pressure. Continue to rotate the adjusting screw and repeat the test per Step 1 previous until the specified set pressure is achieved.
- To determine reseat pressure, slowly decrease the inlet pressure and the actuator pressure will begin to increase. Reseat occurs when the actuator pressure equal the inlet pressure.
- 4. The difference between set and reseat pressure,"blowdown", can be adjusted with the blowdown needle (28). Maximum clockwise rotation provides rapid relief valve opening, "snap action" and maximum blowdown. Standard blowdown, unless otherwise specified is 7 10% below set pressure.
- 5. Increased counter clockwise rotation of blowdown screw provides "modulating" action and minimum (zero) blowdown. Reseat pressure is the same as set pressure.


NOTE: The blowdown needle is located in a pressure containing chamber, and is retained by the blowdown o-ring (<u>30</u>) and blowdown locknut (<u>27</u>). DO NOT remove the blowdown needle while under pressure.

6. Remove body vent and install a flexible tube in this port. Immerse this pilot discharge bubble tube in water approximately 1/4" below surface to detect cracking and reseat pressure.


- A small interaction occurs between set pressure and blowdown adjustments. Readjustment of both may be required until the specified set pressure and blowdown are achieved. After completion, lock both screws and locknuts and replace closing cap (29) on adjusting screw (28).
- 8. Hold the valve at the set pressure while preforming a soap bubble test of all bolted, flanged and threaded connections.
- 9. Refer to Table 3 for standard setting Specifications.

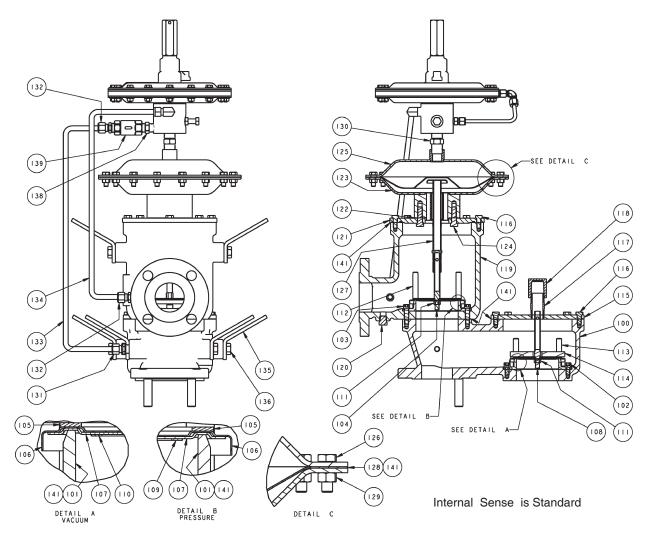
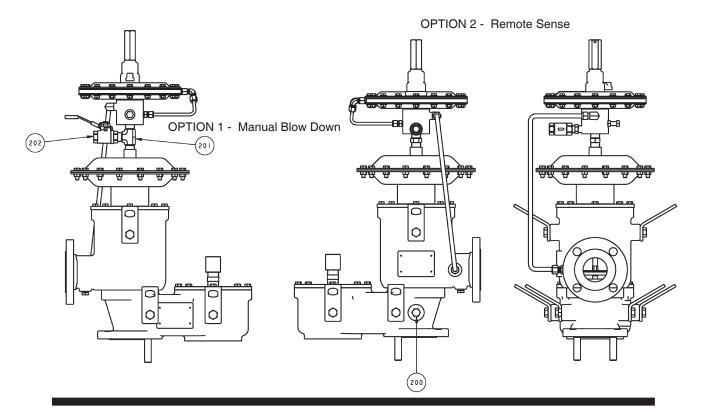
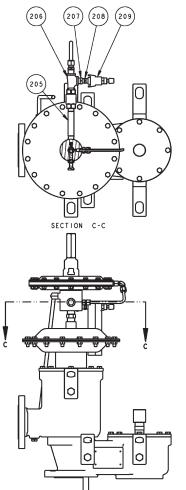

TABLE 3 SETTING SPECIFICATIONS - PILOT VALVE				
Pilot Action	Set Pressure	Set Pressure Limits	Maximum Cracking Pressure % of Set	Reseat Pressure % of Set
Snap	2" - 8" WC	+/- 0.2"WC	75	90 +/- 3
Snap	8.1" WC - 1.0 psig	+/- 3%	90	90 +/- 3
Snap	1.1 - 15.0 psig	+/- 3%	95	93 +/- 3
Modulating	2" - 8" WC	+/- 0.2" WC	75	100
Modulating	8.1" - 1.0 psig	+/- 3%	90	100
Modulating	1.1 - 15.0 psig	+/- 3%	95	100

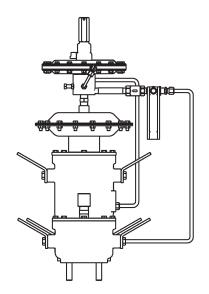
FIGURE 1 Pilot Valve Test Stand

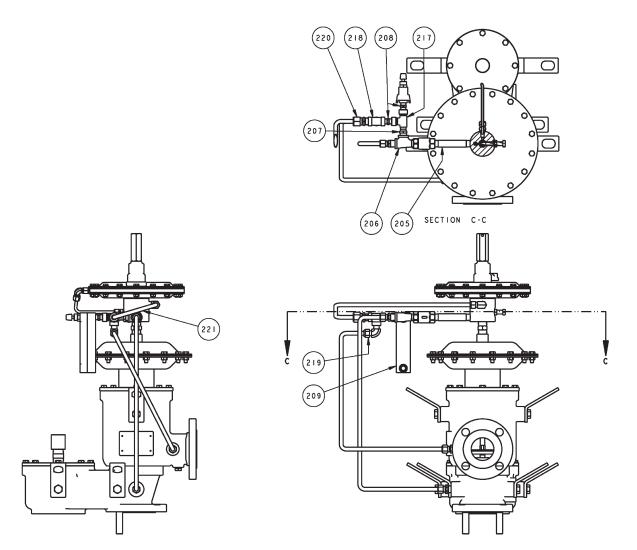
FIGURE 2 - PILOT VALVE



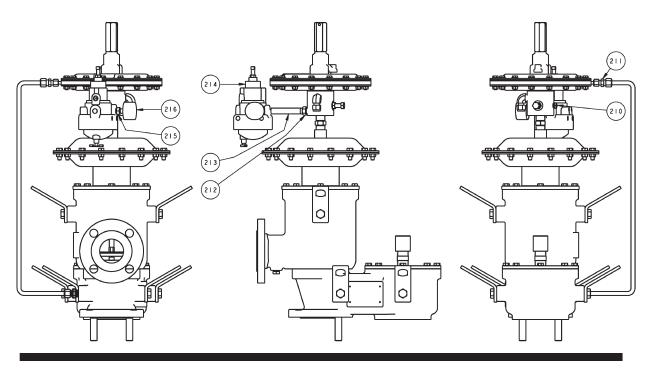

ITEM NO.

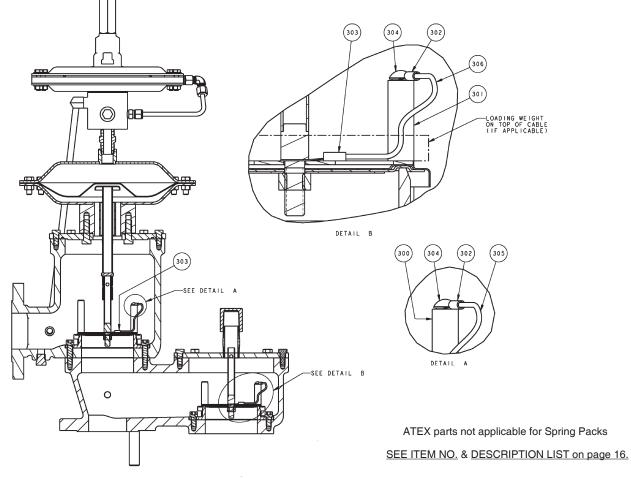
FEM NO.	DESCRIPTION	ITEM NO.	DESCRIPTION
100	Body	121	Pressure cover
101	Seat ring	122	Gasket - Actuator case *
102	Seat ring bolts - Vacuum	123	Lower Act. case assy.
103	Seat ring bolts - Pressure	124	Cap screw
104	Pressure stem	125	Upper case assy.
105	Stiffener plate	126	Cap screw -Act. case
106	Pressure /Vacuum pallet	127	Support plate
107	Diaphragm *	128	Act. Diaphragm *
108	Vacuum Stem	129	Nut - Act. case
109	Diaphragm retainer - Pressure	130	Pilot mounting nipple
110	Diaphragm retainer - Vacuum	131	Sense tube connector 1
111	Lock nut	132	Sense tube connector 2
112	Pallet guide - Pressure	133	Sense tube
113	Pallet guide - Vacuum	134	Discharge tube
114	Pallet weight	135	Lifting bracket
115	Vacuum cover	136	Cap screw - Lifting bracket
116	Cap screw - Cover	137	Stud
117	Nipple - Vacuum cover	138	Nipple - Check valve
118	Pipe cap	139	Check valve
119	Pipe-away body	140	Name Plate
120	Plug	141	Joint tape * See Figure 4

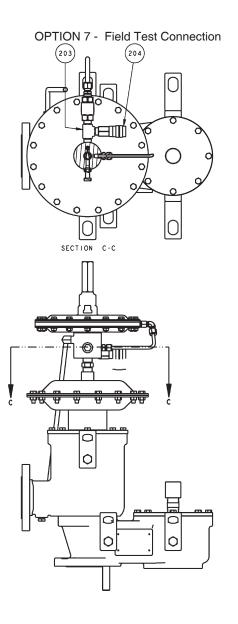

* Spare parts

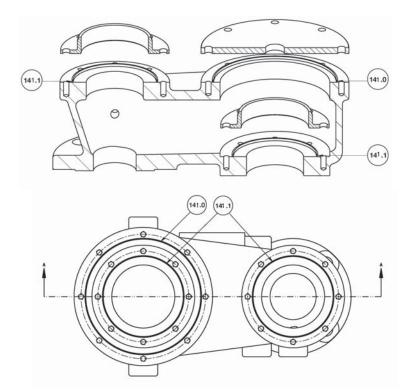


OPTION 3 - Rotometer to Purge Pilot Sense




OPTION 4 - Rotometer to Purge Pilot Sense Line & Discharge Line


OPTION 5 - Air Assist


OPTION 6 - ATEX

IOM-5200

Figure 4 - Joint Tape Application

TFE TAPE LENGTH

Size	Item 141.0 *	Item 141.1 **
2"	23"	17"
3"	25"	20"
4"	33"	28"
6"	38"	34"
8"	46"	41"
10"	56"	47"
12"	58"	51"
* Ouar	tity 1 per unit	

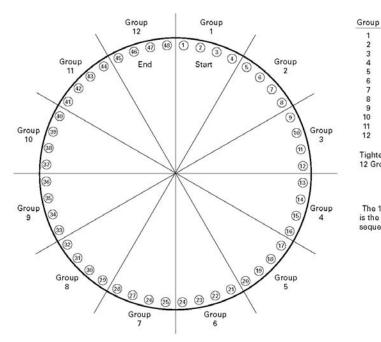
* Quantity 1 per unit.
** Quantity 2 per unit.

ITEM NO.	DESCRIPTION
200	Plug - Remote sense
201	MNPT Tee - Manual blowdown
202	Ball valve - Manual blowdown
203	MNPT Tee - Field test conn.
204	Push lock air fitting - Field test
205	Nipple - Purge Opt.
206	Street Tee - Purge Opt.
207	Red. Bushing - Purge Opt.
208	MNPT Flow orifice - Purge Opt.
209	Purge meter - Purge Opt.
210	Pipe plug - Air assist
211	Sense tube conn FNPT Air assist
212	Red. bushing - Air assist
213	Nipple - Air assist
214	Filter Regulator Air assist

ITEM NO. DESCRIPTION

- 215 Red. bushing Gauge Air assist
- 216 Pressure gauge Air assist
- 217 Street Tee Discharge purge
- 218 Female Tee Discharge purge
- 219 Compression elbow Discharge purge
- 220 Straight tube fit. Discharge purge
- 221 Tube Discharge purge
- 300 Pallet guide Pressure ATEX
- 301 Pallet guide Vacuum ATEX302 Cable eyelet 1 ATEX
- 303 Cable eyelet 2 ATEX
- 304 Screw ATEX
- 304 Screw ATEX 305 Cable - Pressure - ATEX
- 306 Cable Vacuum ATEX

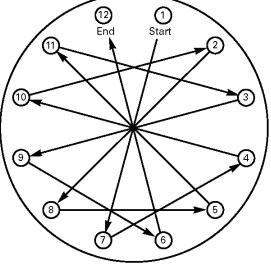
ADDENDUM - A TIGHTENING SEQUENCE FOR FLANGE BOLTING


GUIDELINES FOR BOLTED FLANGE JOINT ASSEMBLY ACCORDING TO ASME PCC-1 SPECS

STEP	LOADING
Install	Hand tighten. Check flange gap around circumference for uniformity. If the gap is not reasonably uniform, make the appropriate adjustments by selective tightening before proceeding.
Round 1	Tighten to 20% to 30% of target torque. Check flange gap around circumference for uniformity. If the gap is not reasonably uniform, make the appropriate adjustments by selective tightening before proceeding.
Round 2	Tighten to 50% to 70% of target torque. Check flange gap around circumference for uniformity. If the gap is not reasonably uniform, make the appropriate adjustments by selective tightening before proceeding.
Bound 3	Tighten to 100% of target torque. Check flange gap around circumference for uniformity. If the gap

Fighten to 100% of target torque. Check flange gap around circumference for uniformity. If the gap Round 3 is not reasonably uniform, make the appropriate adjustments by selective tightening.

1


2

5-6-7-8 9-10-11-12 3 4 13-14-15-16 17-18-19-20 5 21-22-23-24 6 7 25-26-27-28 29-30-31-32 8 9 33-34-35-36 10 37-38-39-40 41-42-43-44 45-46-47-48 11 12 Tightening sequence for 12 Groups: 1-7-4-10 ↓ 2-8-5-11 ↓ 3-9-6-12 The 12-group sequence is the same as a 12-bolt sequence

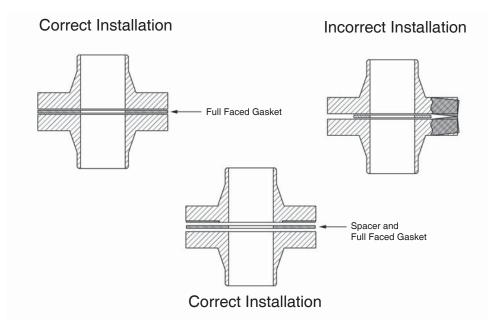
Bolts

1-2-3-4

Tightening Sequence for 12 bolts (Round 1 through Round 3)

1-7-4-10 → 2-8-5-11 → 3-9-6-12

RECOMMENDATIONS FOR PROPER GASKET INSTALLATION


Gasket seating surfaces for tank nozzle flange must be clean, free of scratches, corrosion, tool marks and flat. Use either a full faced or ring gasket for steel and stainless steel raised face flanges

FRP and Aluminum vents are furnished with flat faced flanges. It is recommended that they be installed on mating flat face flanges with a full faced gasket. If the flat face of the vent is sealing against a raised face steel flange, a spacer or filler ring must be used to fill the annular space of the raised face steel flange.

Refer to Gasket Dimension Table.

Ensure that the gasket material is suitable for the service. Make sure that the gasket is compressed evenly and the flanges are not distorted. Utilizing proper torquing techniques will ensure a tight seal and prevent leakage around the gasket. See preceding page.

NOTE: Incorrect positioning and/or selection of gasket(s) between the flanges will cause bending stresses at the flange that may damage the flange joint as bolting is tightened. This is more likely to occur with aluminum or cast iron materials.

Cashco, Inc. P.O. Box 6 Ellsworth, KS 67439-0006 PH (785) 472-4461 Fax. # (785) 472-3539 www.cashco.com email: sales@cashco.com Printed in U.S.A. 5200-IOM Cashco GmbH Handwerkerstrasse 15 15366 Hoppegarten, Germany PH +49 3342 30968 0 Fax. No. +49 3342 30968 29 www.cashco.com email: germany@cashco.com Cashco do Brasil, Ltda. Al. Venus, 340 Indaiatuba - Sao Paulo, Brazil PH +55 11 99677 7177 Fax. No. www.cashco.com email: brazil@cashco.com